Andre Ordens Moving Average Filteret
Jeg må designe et glidende gjennomsnittsfilter som har en avskjæringsfrekvens på 7,8 Hz. Jeg har brukt glidende gjennomsnittlige filtre før, men så vidt jeg er klar over, er den eneste parameteren som kan mates inn, antall poeng som skal gjennomsnittes. Hvordan kan dette forholde seg til en avskjæringsfrekvens Den inverse av 7,8 Hz er 130 ms, og jeg jobber med data som samples ved 1000 Hz. Betyr dette at jeg burde bruke et bevegelige gjennomsnittlig filtervinduestørrelse på 130 prøver, eller er det noe annet jeg savner her, spurte Jul 18 13 klokken 9:52 Det glidende gjennomsnittsfilteret er filteret som brukes i tidsdomene for å fjerne støyen er lagt til og også for utjevningsformålet, men hvis du bruker det samme bevegelige gjennomsnittsfilteret i frekvensområdet for frekvensseparasjon, vil ytelsen være verst. så i så fall bruk frekvensdomener filtre ndash user19373 Feb 3 16 at 5:53 Det glidende gjennomsnittsfilteret (noen ganger kjent som en boxcar filter) har en rektangulær impulsrespons: Eller, oppgitt annerledes: Husk at en diskret tidssystemfrekvensrespons er lik den diskrete tiden Fourier-transformasjonen av impulsresponsen, kan vi beregne det som følger: Det som var mest interessert i for ditt tilfelle er størrelsesresponsen til filteret, H (omega). Ved hjelp av et par enkle manipulasjoner kan vi få det på en enklere måte: Dette ser kanskje ikke ut til å være lettere å forstå. Men på grunn av Eulers identitet. husk det: Derfor kan vi skrive ovenstående som: Som jeg sa før, hva du virkelig bekymret for, er størrelsen på frekvensresponsen. Så, vi kan ta størrelsen på det ovennevnte for å forenkle det videre: Merk: Vi kan slippe de eksponentielle betingelsene ut fordi de ikke påvirker størrelsen på resultatet e 1 for alle verdier av omega. Siden xy xy for to todelige komplekse tall x og y, kan vi konkludere med at tilstedeværelsen av eksponentielle termer ikke påvirker den generelle størrelsesresponsen (i stedet påvirker de systemfasesponsen). Den resulterende funksjonen inne i størrelsesbeslagene er en form for Dirichlet-kjernen. Det kalles noen ganger en periodisk sinc-funksjon, fordi den ligner sinc-funksjonen noe i utseende, men er periodisk i stedet. Uansett, siden definisjonen av cutoff-frekvensen er noe underspecified (-3 dB punkt -6 dB poeng første sidelobe null), kan du bruke ovennevnte ligning for å løse alt du trenger. Spesifikt kan du gjøre følgende: Sett H (omega) til verdien som svarer til filterresponsen du vil ha ved cutoff-frekvensen. Sett omega lik til cutoff frekvensen. For å kartlegge en kontinuerlig tidsfrekvens til diskretidsdomenet, husk at omega 2pi frac, hvor fs er samplingsfrekvensen. Finn verdien av N som gir deg den beste avtalen mellom venstre og høyre side av ligningen. Det skal være lengden på det bevegelige gjennomsnittet. Hvis N er lengden på det bevegelige gjennomsnittet, er en omtrentlig avskjæringsfrekvens F (gyldig for N gt 2) i normalisert frekvens Fffs: Den inverse av denne er Denne formel er asymptotisk riktig for stor N og har om lag 2 feil for N2 og mindre enn 0,5 for N4. PS! Etter to år, her endelig hva var tilnærmingen fulgt. Resultatet ble basert på tilnærming av MA-amplitudespektret rundt f0 som en parabola (2. rekkefølge Serie) i henhold til MA (Omega) ca. 1 frac - frac Omega2 som kan gjøres mer nøyaktig nær nullkryssing av MA (Omega) - frac ved å multiplisere Omega med en koeffisient som oppnår MA (Omega) ca. 10.907523 (frac - frac) Omega2 Oppløsningen av MA (Omega) - frac 0 gir resultatene ovenfor, hvor 2pi F Omega. Alt ovenfor gjelder 3 dB cutoff frekvensen, emnet for dette innlegget. Noen ganger, selv om det er interessant å oppnå en dempingsprofil i stoppbånd som er sammenlignbar med en 1-ords IIR Low Pass Filter (single pole LPF) med en gitt -3dB cut-off frekvens (en slik LPF kalles også leaky integrator, å ha en stolpe ikke akkurat ved likestrøm men nær det). Faktisk har både MA og den første rekkefølgen IIR LPF -20dBdecade-skråningen i stoppbåndet (en trenger en større N enn den som brukes i figuren, N32, for å se dette), men mens MA har spektrale nuller ved FkN og en 1f evelope, har IIR filteret bare en 1f profil. Hvis man ønsker å skaffe et MA-filter med lignende støyfiltreringsegenskaper som dette IIR-filteret, og samsvarer med 3dB-kuttfrekvensene for å være det samme, ved å sammenligne de to spektrene, ville han innse at stoppbåndets rippel av MA-filteret ender opp 3dB under det av IIR-filteret. For å få det samme stoppbåndet ripple (dvs. samme støydempning) som IIR-filteret, kan formlene modifiseres som følger: Jeg fant tilbake Mathematica-skriptet der jeg beregnet kuttet av for flere filtre, inkludert MA-en. Resultatet ble basert på tilnærming av MA-spektret rundt f0 som en parabola ifølge MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) ca. N16F2 (N-N3) pi2. Og dermed krysse med 1sqrt derfra. ndash Massimo Jan 17 16 kl. 2: 08FIR Filter Grunnleggende 1.1 Hva er quotFIR filtersquot FIR-filtre er en av to primære typer digitale filtre som brukes i Digital Signal Processing (DSP) applikasjoner, den andre typen er IIR. 1.2 Hva betyr quotFIRquot betyr quotFIRquot quotFinite Impulse Responsequot. Hvis du legger inn en impuls, det vil si en enkelt quot1quot-prøve etterfulgt av mange quot0quot-prøver, vil nuller komme ut etter at quot1quot-prøven har gått gjennom filterets forsinkelseslinje. 1.3 Hvorfor er impulsresponsen quotfinitequot I det vanlige tilfellet er impulsresponsen endelig fordi det ikke er tilbakemelding i FIR. Manglende tilbakemelding garanterer at impulsresponsen vil være endelig. Derfor er uttrykket quotfinite impulse responsequot nesten synonymt med quotno feedbackquot. Men hvis tilbakemeldingen er ansatt, er impulsresponsen endelig, men filteret er fortsatt en FIR. Et eksempel er det bevegelige gjennomsnittsfilteret, hvor den Nth-forhåndseksempler trekkes tilbake (hver gang en ny prøve kommer inn). Dette filteret har en endelig impulsrespons, selv om den bruker tilbakemelding: etter N prøver av en impuls, vil utgangen vil alltid være null. 1.4 Hvordan uttaler jeg quotFIRquot Noen sier at bokstavene F-I-R andre uttaler som om det var en type tre. Vi foretrekker treet. (Forskjellen er om du snakker om et F-I-R-filter eller et FIR-filter.) 1.5 Hva er alternativet til FIR-filtre DSP-filtre kan også være quotInfinite Impulse Responsequot (IIR). (Se dspGurus IIR FAQ.) IIR-filtre bruker tilbakemelding, så når du skriver inn en impuls, ringer utgangen teoretisk på ubestemt tid. 1.6 Hvordan sammenligner FIR-filtre med IIR-filtre Hver har fordeler og ulemper. Samlet sett er fordelene ved FIR-filter større enn ulempene, så de brukes mye mer enn IIR. 1.6.1 Hva er fordelene med FIR-filter (sammenlignet med IIR-filtre) Sammenlignet med IIR-filtre, tilbyr FIR-filtre følgende fordeler: De kan enkelt utformes for å være kvadratlinjefase (og vanligvis er). Enkelt sagt, linjeskiftfiltre forsinker inngangssignalet, men donrsquot forvrenger sin fase. De er enkle å implementere. På de fleste DSP-mikroprosessorer kan FIR-beregningen gjøres ved å løse en enkelt instruksjon. De er egnet til multi-rate applikasjoner. Med multi-rate mener vi enten quotdecimationquot (redusere samplingsfrekvensen), quotinterpolationquot (øke samplingsfrekvensen), eller begge deler. Uansett om deimerer eller interpolerer, gjør bruk av FIR-filtre det mulig å utelate noen av beregningene, og gir dermed en viktig beregningseffektivitet. I motsetning dersom IIR-filtre brukes, må hver utgang beregnes individuelt, selv om den utgangen vil kasseres (slik at tilbakemeldingen vil bli innlemmet i filteret). De har ønskelige numeriske egenskaper. I praksis må alle DSP-filtre implementeres ved å bruke finite-presis aritmetikk, det vil si et begrenset antall biter. Bruk av finite-presisjon aritmetikk i IIR-filtre kan forårsake betydelige problemer på grunn av bruk av tilbakemelding, men FIR-filtre uten tilbakemelding kan vanligvis implementeres med færre biter, og designeren har færre praktiske problemer å løse i forbindelse med ikke-ideell aritmetikk. De kan implementeres ved hjelp av fraksjonal aritmetikk. I motsetning til IIR-filtre, er det alltid mulig å implementere et FIR-filter ved hjelp av koeffisienter med størrelsen mindre enn 1,0. (Den samlede gevinsten til FIR-filteret kan justeres ved utgang, hvis ønskelig.) Dette er et viktig hensyn når du bruker fastpunkts-DSP, fordi det gjør implementeringen mye enklere. 1.6.2 Hva er ulempene med FIR-filter (sammenlignet med IIR-filtre) Sammenlignet med IIR-filtre, har FIR-filtre noen ganger den ulempen at de krever mer minne og - beregning for å oppnå en gitt filterresponskarakteristikk. Også enkelte svar er ikke praktiske å implementere med FIR-filtre. 1.7 Hvilke begreper brukes til å beskrive FIR-filter Impulsrespons - Quimpulsresponsequot av et FIR-filter er faktisk bare settet med FIR-koeffisienter. (Hvis du legger et kvoteprotokvot i et FIR-filter som består av en quot1quot-prøve etterfulgt av mange quot0quot-prøver, vil filterets utgang være settet av koeffisienter, da den ene prøven beveger seg forbi hver koeffisient i sin tur for å danne utgangen.) Trykk - En FIR quottapquot er bare et koeffisientpar. Antallet FIR-kraner, ofte angitt som quotNquot, er en indikasjon på 1) mengden minne som kreves for å implementere filteret, 2) antall kalkulasjoner som kreves, og 3) mengden av kvoteringskvoten som filteret kan utføre, flere kraner betyr mer stoppbånddemping, mindre krusninger, smalere filtre, etc. Multiply-Accumulate (MAC) - I en FIR-sammenheng er en quotMACquot drift av å multiplisere en koeffisient av den tilsvarende forsinkede dataprøven og akkumulere resultatet. FIRs krever vanligvis en MAC per trykk. De fleste DSP mikroprosessorer implementerer MAC-operasjonen i en enkelt instruksjons syklus. Overgangsbånd - Båndet mellom frekvenser mellom passbånd og stoppbåndskanter. Jo smalere overgangsbåndet, desto flere kraner er nødvendig for å implementere filteret. (Et quotsmallquot overgangsbånd resulterer i et quotsharpquot filter.) Delay Line - Settet av minneelementer som implementerer quZ-1quot forsinkelseselementene i FIR-beregningen. Sirkulær buffer - En spesiell buffer som er quotcircularquot fordi inkrementering på slutten fører til at den vikles rundt til begynnelsen, eller fordi dekrementering fra begynnelsen fører til at den vikles rundt til slutten. Sirkulære buffere leveres ofte av DSP mikroprosessorer for å implementere kvoteringskvoten av prøvene gjennom FIR-forsinkelseslinjen uten å måtte bokstavelig talt flytte dataene i minnet. Når en ny prøve legges til bufferen, erstatter den automatisk den eldste. Flyttende gjennomsnitt og eksponensielle utjevningsmodeller Som et første skritt i å bevege seg utover gjennomsnittlige modeller, kan tilfeldige gangmodeller og lineære trendmodeller, ikke-sesongsmønstre og trender ekstrapoleres ved bruk av en flytende gjennomsnitt eller utjevningsmodell. Den grunnleggende forutsetningen bak gjennomsnittlige og utjevningsmodeller er at tidsserien er lokalt stasjonær med et sakte varierende middel. Derfor tar vi et flytende (lokalt) gjennomsnitt for å anslå dagens verdi av gjennomsnittet, og deretter bruke det som prognosen for nær fremtid. Dette kan betraktes som et kompromiss mellom den gjennomsnittlige modellen og den tilfeldige-walk-uten-drift-modellen. Den samme strategien kan brukes til å estimere og ekstrapolere en lokal trend. Et glidende gjennomsnitt kalles ofte en quotsmoothedquot-versjon av den opprinnelige serien, fordi kortsiktig gjennomsnittsverdi medfører utjevning av støtene i den opprinnelige serien. Ved å justere graden av utjevning (bredden på det bevegelige gjennomsnittet), kan vi håpe å finne en slags optimal balanse mellom ytelsen til de gjennomsnittlige og tilfeldige turmodellene. Den enkleste typen gjennomsnittlig modell er. Enkel (likevektet) Flytende gjennomsnitt: Værvarselet for verdien av Y på tidspunktet t1 som er laget på tidspunktet t, er det enkle gjennomsnittet av de nyeste m-observasjonene: (Her og andre steder vil jeg bruke symbolet 8220Y-hat8221 til å stå for en prognose av tidsserien Y som ble gjort så tidlig som mulig ved en gitt modell.) Dette gjennomsnittet er sentrert ved period-t (m1) 2, noe som innebærer at estimatet av det lokale middel vil ha en tendens til å ligge bak den sanne verdien av det lokale gjennomsnittet med ca. (m1) 2 perioder. Således sier vi at gjennomsnittsalderen for dataene i det enkle glidende gjennomsnittet er (m1) 2 i forhold til den periode prognosen beregnes for: Dette er hvor lang tid prognosene vil ha til å ligge bak vendepunkter i dataene . For eksempel, hvis du er i gjennomsnitt de siste 5 verdiene, vil prognosene være ca 3 perioder sent i å svare på vendepunkter. Merk at hvis m1, den enkle glidende gjennomsnittlige (SMA) modellen er lik den tilfeldige turmodellen (uten vekst). Hvis m er veldig stor (sammenlignbar med lengden på estimeringsperioden), svarer SMA-modellen til den gjennomsnittlige modellen. Som med hvilken som helst parameter i en prognosemodell, er det vanlig å justere verdien av k for å oppnå den beste kvote kvoten til dataene, dvs. de minste prognosefeilene i gjennomsnitt. Her er et eksempel på en serie som ser ut til å vise tilfeldige svingninger rundt et sakte varierende middel. Først kan vi prøve å passe den med en tilfeldig walk-modell, noe som tilsvarer et enkelt bevegelige gjennomsnitt på 1 sikt: Den tilfeldige turmodellen reagerer veldig raskt på endringer i serien, men i så måte velger den mye av kvotenivået i data (tilfeldige svingninger) samt quotsignalquot (det lokale gjennomsnittet). Hvis vi i stedet prøver et enkelt glidende gjennomsnitt på 5 termer, får vi et smidigere sett med prognoser: Det 5-tiden enkle glidende gjennomsnittet gir betydelig mindre feil enn den tilfeldige turmodellen i dette tilfellet. Gjennomsnittsalderen for dataene i denne prognosen er 3 ((51) 2), slik at den har en tendens til å ligge bak vendepunktene med om lag tre perioder. (For eksempel ser det ut til at en nedtur har skjedd i perioden 21, men prognosene vender seg ikke til flere perioder senere.) Legg merke til at de langsiktige prognosene fra SMA-modellen er en horisontal rettlinje, akkurat som i tilfeldig gang modell. Således antar SMA-modellen at det ikke er noen trend i dataene. Mens prognosene fra den tilfeldige turmodellen ganske enkelt er lik den siste observerte verdien, er prognosene fra SMA-modellen lik et veid gjennomsnitt av de siste verdiene. De konfidensgrenser som beregnes av Statgraphics for de langsiktige prognosene for det enkle glidende gjennomsnittet, blir ikke større da prognoseperioden øker. Dette er åpenbart ikke riktig. Dessverre er det ingen underliggende statistisk teori som forteller oss hvordan konfidensintervallene skal utvide seg for denne modellen. Det er imidlertid ikke så vanskelig å beregne empiriske estimater av konfidensgrensene for lengre horisontprognoser. For eksempel kan du sette opp et regneark der SMA-modellen skulle brukes til å prognose 2 trinn foran, 3 trinn fremover, etc. i den historiske dataprøven. Du kan deretter beregne utvalgsstandardavvikene til feilene i hver prognosehorisont, og deretter konstruere konfidensintervaller for langsiktige prognoser ved å legge til og trekke ut multipler av riktig standardavvik. Hvis vi prøver et 9-sikt enkelt glidende gjennomsnitt, får vi enda jevnere prognoser og mer av en bremseeffekt: Gjennomsnittsalderen er nå 5 perioder (91) 2). Hvis vi tar et 19-årig glidende gjennomsnitt, øker gjennomsnittsalderen til 10: Legg merke til at prognosene nå faller bakom vendepunkter med ca 10 perioder. Hvilken mengde utjevning er best for denne serien Her er et bord som sammenligner feilstatistikken sin, også et gjennomsnitt på tre sikt: Modell C, 5-års glidende gjennomsnitt, gir den laveste verdien av RMSE med en liten margin over 3 term og 9-sikt gjennomsnitt, og deres andre statistikker er nesten identiske. Så, blant modeller med svært like feilstatistikk, kan vi velge om vi foretrekker litt mer respons eller litt mer glatt i prognosene. (Tilbake til toppen av siden.) Browns Simple Exponential Smoothing (eksponentielt vektet glidende gjennomsnitt) Den enkle glidende gjennomsnittsmodellen beskrevet ovenfor har den uønskede egenskapen som den behandler de siste k-observasjonene, like og fullstendig ignorerer alle foregående observasjoner. Intuitivt bør tidligere data diskonteres på en mer gradvis måte - for eksempel bør den siste observasjonen få litt mer vekt enn 2. siste, og den 2. siste skal få litt mer vekt enn den 3. siste, og så videre. Den enkle eksponensielle utjevning (SES) - modellen oppnår dette. La 945 betegne en quotsmoothing constantquot (et tall mellom 0 og 1). En måte å skrive modellen på er å definere en serie L som representerer dagens nivå (dvs. lokal middelverdi) av serien som estimert fra data til nå. Verdien av L på tidspunktet t beregnes rekursivt fra sin egen tidligere verdi slik: Således er den nåværende glattede verdien en interpolering mellom den forrige glattede verdien og den nåværende observasjonen, hvor 945 styrer nærheten til den interpolerte verdien til den nyeste observasjon. Forventningen for neste periode er bare den nåværende glatte verdien: Tilsvarende kan vi uttrykke neste prognose direkte i forhold til tidligere prognoser og tidligere observasjoner, i en hvilken som helst av de tilsvarende versjoner. I den første versjonen er prognosen en interpolasjon mellom forrige prognose og tidligere observasjon: I den andre versjonen blir neste prognose oppnådd ved å justere forrige prognose i retning av den forrige feilen med en brøkdel av 945. Er feilen gjort ved tid t. I den tredje versjonen er prognosen et eksponentielt vektet (dvs. nedsatt) glidende gjennomsnitt med rabattfaktor 1-945: Interpolasjonsversjonen av prognoseformelen er den enkleste å bruke hvis du implementerer modellen på et regneark: det passer inn i en enkeltcelle og inneholder cellehenvisninger som peker på forrige prognose, forrige observasjon og cellen der verdien av 945 er lagret. Merk at hvis 945 1 er SES-modellen tilsvarer en tilfeldig turmodell (uten vekst). Hvis 945 0 er SES-modellen ekvivalent med den gjennomsnittlige modellen, forutsatt at den første glattede verdien er satt lik gjennomsnittet. (Gå tilbake til toppen av siden.) Gjennomsnittsalderen for dataene i prognosen for enkel eksponensiell utjevning er 1 945 i forhold til perioden for prognosen beregnes. (Dette skal ikke være åpenbart, men det kan enkelt vises ved å vurdere en uendelig serie.) Derfor har den enkle, glidende gjennomsnittlige prognosen en tendens til å ligge bak vendepunktene med rundt 1 945 perioder. For eksempel, når 945 0,5 lag er 2 perioder når 945 0.2 lag er 5 perioder når 945 0,1 lag er 10 perioder, og så videre. For en gitt gjennomsnittlig alder (det vil si mengden lag), er prognosen for enkel eksponensiell utjevning (SES) noe bedre enn SMA-prognosen (Simple Moving Average) fordi den legger relativt mer vekt på den siste observasjonen - dvs. det er litt mer quotresponsivequot for endringer som oppstod i den siste tiden. For eksempel har en SMA-modell med 9 vilkår og en SES-modell med 945 0,2 begge en gjennomsnittlig alder på 5 for dataene i prognosene, men SES-modellen legger mer vekt på de siste 3 verdiene enn SMA-modellen og ved Samtidig er det ikke 8220forget8221 om verdier som er mer enn 9 år gamle, som vist i dette diagrammet. En annen viktig fordel ved SES-modellen over SMA-modellen er at SES-modellen bruker en utjevningsparameter som er kontinuerlig variabel, slik at den lett kan optimaliseres ved å bruke en quotsolverquot-algoritme for å minimere den gjennomsnittlige kvadratfeilen. Den optimale verdien av 945 i SES-modellen for denne serien viser seg å være 0,2961, som vist her: Gjennomsnittsalderen for dataene i denne prognosen er 10,2961 3,4 perioder, noe som ligner på et 6-sikt enkelt glidende gjennomsnitt. De langsiktige prognosene fra SES-modellen er en horisontal rett linje. som i SMA-modellen og den tilfeldige turmodellen uten vekst. Vær imidlertid oppmerksom på at konfidensintervallene som beregnes av Statgraphics, divergerer nå på en rimelig måte, og at de er vesentlig smalere enn konfidensintervallene for den tilfeldige turmodellen. SES-modellen antar at serien er noe mer forutsigbar enn den tilfeldige turmodellen. En SES-modell er faktisk et spesielt tilfelle av en ARIMA-modell. slik at den statistiske teorien om ARIMA-modeller gir et solid grunnlag for beregning av konfidensintervall for SES-modellen. Spesielt er en SES-modell en ARIMA-modell med en ikke-sesongforskjell, en MA (1) og ikke en konstant periode. ellers kjent som en quotARIMA (0,1,1) modell uten constantquot. MA (1) - koeffisienten i ARIMA-modellen tilsvarer mengden 1-945 i SES-modellen. For eksempel, hvis du passer på en ARIMA (0,1,1) modell uten konstant til serien analysert her, viser den estimerte MA (1) - koeffisienten seg å være 0,7029, som er nesten nøyaktig en minus 0,2961. Det er mulig å legge til antagelsen om en konstant lineær trend uten null som en SES-modell. For å gjøre dette oppgir du bare en ARIMA-modell med en ikke-sesongforskjell og en MA (1) - sikt med en konstant, dvs. en ARIMA-modell (0,1,1) med konstant. De langsiktige prognosene vil da ha en trend som er lik den gjennomsnittlige trenden observert over hele estimeringsperioden. Du kan ikke gjøre dette i forbindelse med sesongjustering, fordi sesongjusteringsalternativene er deaktivert når modelltypen er satt til ARIMA. Du kan imidlertid legge til en konstant langsiktig eksponensiell trend for en enkel eksponensiell utjevningsmodell (med eller uten sesongjustering) ved å bruke inflasjonsjusteringsalternativet i prognoseprosedyren. Den aktuelle kvoteringskvoten (prosentvekst) per periode kan estimeres som hellingskoeffisienten i en lineær trendmodell som er montert på dataene i forbindelse med en naturlig logaritme transformasjon, eller det kan være basert på annen uavhengig informasjon om langsiktige vekstutsikter . (Tilbake til toppen av siden.) Browns Lineær (dvs. dobbel) Eksponensiell utjevning SMA-modellene og SES-modellene antar at det ikke er noen trend av noe slag i dataene (som vanligvis er OK eller i det minste ikke altfor dårlig for 1- trinnvise prognoser når dataene er relativt støyende), og de kan modifiseres for å inkorporere en konstant lineær trend som vist ovenfor. Hva med kortsiktige trender Hvis en serie viser en varierende vekstnivå eller et syklisk mønster som skiller seg tydelig ut mot støyen, og hvis det er behov for å prognose mer enn 1 periode framover, kan estimering av en lokal trend også være et problem. Den enkle eksponensielle utjevningsmodellen kan generaliseres for å oppnå en lineær eksponensiell utjevning (LES) modell som beregner lokale estimater av både nivå og trend. Den enkleste tidsvarierende trendmodellen er Browns lineær eksponensiell utjevningsmodell, som bruker to forskjellige glatte serier som er sentrert på forskjellige tidspunkter. Forutsigelsesformelen er basert på en ekstrapolering av en linje gjennom de to sentrene. (En mer sofistikert versjon av denne modellen, Holt8217s, blir diskutert nedenfor.) Den algebraiske form av Brown8217s lineær eksponensiell utjevningsmodell, som den enkle eksponensielle utjevningsmodellen, kan uttrykkes i en rekke forskjellige, men liknende former. Denne standardmodellen er vanligvis uttrykt som følger: La S betegne den enkeltglattede serien som er oppnådd ved å anvende enkel eksponensiell utjevning til serie Y. Dvs. verdien av S ved period t er gitt av: (Husk at, under enkle eksponensiell utjevning, dette ville være prognosen for Y ved periode t1.) Lad deretter Squot betegne den dobbeltslettede serien oppnådd ved å anvende enkel eksponensiell utjevning (ved hjelp av samme 945) til serie S: Endelig prognosen for Y tk. for noe kgt1, er gitt av: Dette gir e 1 0 (det vil si lure litt, og la den første prognosen være den samme første observasjonen) og e 2 Y 2 8211 Y 1. hvoretter prognosene genereres ved å bruke ligningen ovenfor. Dette gir de samme monterte verdiene som formelen basert på S og S dersom sistnevnte ble startet med S 1 S 1 Y 1. Denne versjonen av modellen brukes på neste side som illustrerer en kombinasjon av eksponensiell utjevning med sesongjustering. Holt8217s Lineær eksponensiell utjevning Brown8217s LES-modell beregner lokale estimater av nivå og trend ved å utjevne de siste dataene, men det faktum at det gjør det med en enkelt utjevningsparameter, stiller en begrensning på datamønstrene som den kan passe: nivået og trenden er ikke tillatt å variere til uavhengige priser. Holt8217s LES-modellen løser dette problemet ved å inkludere to utjevningskonstanter, en for nivået og en for trenden. Til enhver tid t, som i Brown8217s modell, er det et estimat L t på lokalt nivå og et estimat T t av den lokale trenden. Her beregnes de rekursivt fra verdien av Y observert ved tid t og de forrige estimatene av nivået og trenden ved to likninger som gjelder eksponensiell utjevning til dem separat. Hvis estimert nivå og trend ved tid t-1 er L t82091 og T t-1. henholdsvis, da var prognosen for Y tshy som ville vært gjort på tidspunktet t-1, lik L t-1 T t-1. Når den faktiske verdien er observert, beregnes det oppdaterte estimatet av nivået rekursivt ved å interpolere mellom Y tshy og dens prognose, L t-1 T t 1, med vekt på 945 og 1- 945. Forandringen i estimert nivå, nemlig L t 8209 L t82091. kan tolkes som en støyende måling av trenden på tidspunktet t. Det oppdaterte estimatet av trenden beregnes deretter rekursivt ved å interpolere mellom L t 8209 L t82091 og det forrige estimatet av trenden, T t-1. ved bruk av vekter av 946 og 1-946: Fortolkningen av trend-utjevningskonstanten 946 er analog med den for nivåutjevningskonstanten 945. Modeller med små verdier på 946 antar at trenden bare endrer seg veldig sakte over tid, mens modeller med større 946 antar at det endrer seg raskere. En modell med en stor 946 mener at den fjerne fremtiden er veldig usikker, fordi feil i trendberegning blir ganske viktig når det regnes med mer enn en periode framover. (Tilbake til toppen av siden.) Utjevningskonstantene 945 og 946 kan estimeres på vanlig måte ved å minimere gjennomsnittlig kvadratfeil i de 1-trinns prognosene. Når dette gjøres i Statgraphics, viser estimatene seg å være 945 0.3048 og 946 0.008. Den svært små verdien av 946 betyr at modellen tar svært liten endring i trenden fra en periode til den neste, så i utgangspunktet prøver denne modellen å estimere en langsiktig trend. I analogi med begrepet gjennomsnittlig alder av dataene som brukes til å estimere det lokale nivået i serien, er gjennomsnittsalderen for dataene som brukes til estimering av lokal trenden, proporsjonal med 1 946, men ikke akkurat lik den . I dette tilfellet viser det seg å være 10 006 125. Dette er et svært nøyaktig tall, forutsatt at nøyaktigheten av estimatet av 946 er virkelig 3 desimaler, men det er av samme generelle størrelsesorden som prøvestørrelsen på 100, så denne modellen er i gjennomsnitt over ganske mye historie i estimering av trenden. Prognoseplanet nedenfor viser at LES-modellen anslår en litt større lokal trend i slutten av serien enn den konstante trenden som er estimert i SEStrend-modellen. Også den estimerte verdien på 945 er nesten identisk med den som oppnås ved å montere SES-modellen med eller uten trend, så dette er nesten den samme modellen. Nå ser disse ut som rimelige prognoser for en modell som skal estimere en lokal trend. Hvis du 8220eyeball8221 ser dette, ser det ut som om den lokale trenden har vendt nedover på slutten av serien. Hva har skjedd Parametrene til denne modellen har blitt estimert ved å minimere den kvadriske feilen på 1-trinns prognoser, ikke langsiktige prognoser, i hvilket tilfelle trenden gjør ikke en stor forskjell. Hvis alt du ser på er 1-trinns feil, ser du ikke det større bildet av trender over (si) 10 eller 20 perioder. For å få denne modellen mer i tråd med øyehals ekstrapoleringen av dataene, kan vi manuelt justere trendutjevningskonstanten slik at den bruker en kortere basislinje for trendestimering. Hvis vi for eksempel velger å sette 946 0,1, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden 10 perioder, noe som betyr at vi gjennomsnittsverdi trenden over de siste 20 perioder eller så. Here8217s hva prognosen tomten ser ut hvis vi setter 946 0,1 mens du holder 945 0.3. Dette ser intuitivt fornuftig ut på denne serien, selv om det er sannsynlig farlig å ekstrapolere denne trenden mer enn 10 perioder i fremtiden. Hva med feilstatistikken Her er en modell sammenligning for de to modellene vist ovenfor, samt tre SES-modeller. Den optimale verdien av 945. For SES-modellen er ca. 0,3, men tilsvarende resultater (med henholdsvis litt mer responstid) oppnås med 0,5 og 0,2. (A) Holts lineær eksp. utjevning med alfa 0,3048 og beta 0,008 (B) Holts lineær eksp. utjevning med alfa 0,3 og beta 0,1 (C) Enkel eksponensiell utjevning med alfa 0,5 (D) Enkel eksponensiell utjevning med alfa 0,3 (E) Enkel eksponensiell utjevning med alfa 0,2 Deres statistikk er nesten identisk, slik at vi virkelig kan velge på grunnlag av 1-trinns prognosefeil i dataprøven. Vi må falle tilbake på andre hensyn. Hvis vi sterkt tror at det er fornuftig å basere dagens trendoverslag på hva som har skjedd i løpet av de siste 20 perioder eller så, kan vi gjøre en sak for LES-modellen med 945 0,3 og 946 0,1. Hvis vi ønsker å være agnostiker om det er en lokal trend, kan en av SES-modellene være enklere å forklare, og vil også gi mer mid-of-the-road prognoser for de neste 5 eller 10 periodene. (Tilbake til toppen av siden.) Hvilken type trend-ekstrapolering er best: Horisontal eller lineær Empirisk bevis tyder på at hvis dataene allerede er justert (om nødvendig) for inflasjon, kan det være uhensiktsmessig å ekstrapolere kortsiktig lineær trender veldig langt inn i fremtiden. Trender som tyder på i dag, kan løsne seg i fremtiden på grunn av ulike årsaker som forverring av produkt, økt konkurranse og konjunkturnedganger eller oppgang i en bransje. Av denne grunn utfører enkle eksponensielle utjevning ofte bedre ut av prøven enn det ellers kunne forventes, til tross for sin kvadratiske kvadratiske horisontal trend-ekstrapolering. Dampede trendmodifikasjoner av den lineære eksponensielle utjevningsmodellen brukes også i praksis til å introdusere en konservatismeddel i sine trendprognoser. Den demonstrede LES-modellen kan implementeres som et spesielt tilfelle av en ARIMA-modell, spesielt en ARIMA-modell (1,1,2). Det er mulig å beregne konfidensintervall rundt langsiktige prognoser produsert av eksponentielle utjevningsmodeller, ved å betrakte dem som spesielle tilfeller av ARIMA-modeller. (Pass på: ikke alle programmer beregner konfidensintervaller for disse modellene riktig.) Bredden på konfidensintervaller avhenger av (i) RMS-feilen i modellen, (ii) type utjevning (enkel eller lineær) (iii) verdien (e) av utjevningskonstanten (e) og (iv) antall perioder fremover du forutsetter. Generelt sprer intervallene raskere da 945 blir større i SES-modellen, og de sprer seg mye raskere når lineær snarere enn enkel utjevning brukes. Dette emnet blir diskutert videre i ARIMA-modellene i notatene. (Gå tilbake til toppen av siden.)
Comments
Post a Comment